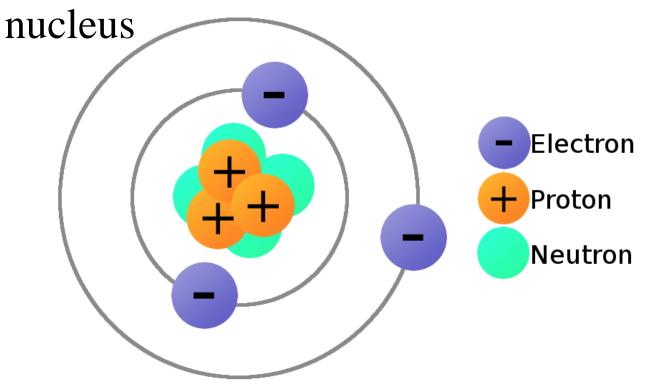

# [3.2] The Atom p. 145 – 149 in Textbook





#### We will be learning about <u>three</u> different parts of the atom today

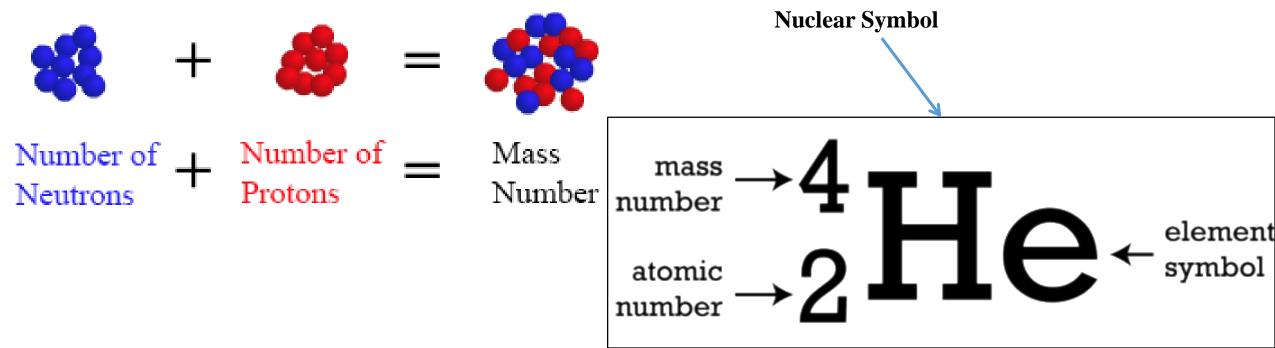
1. What makes up an atom


2. Where an atom's mass is found

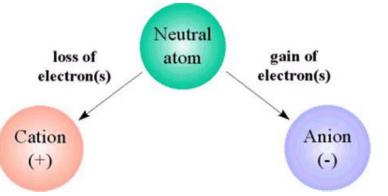
3. What are isotopes

#### What does the atom consist of?

The atom can be further divided into subatomic particles:


- 1. **Proton**: a **positively** charged subatomic particle found in the nucleus
- 2. Neutron: a neutral subatomic particle found in the nucleus
- 3. Electron: a negatively charged subatomic particle found orbiting the



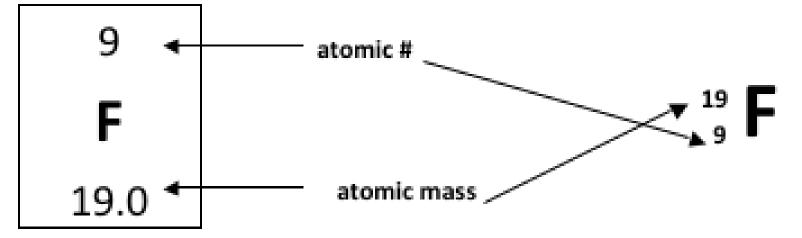

Mass of proton = 1.0 g/mol Mass of neutron = 1.0 g/mol Mass of electron = 0.000549 g/mol

# **Atomic Number**

- Atomic Number: Number of protons in the atom & each element has a different atomic number
- Mass number: Number of protons and neutrons in an atom. Protons and neutrons account for the majority of the atom's mass, in amu (atomic mass units)



# Ions




- If electrons are **added** to or **subtracted** from a neutral atom, the resulting particle is called an **ion**.
- If there is a negative charge, then electrons are **added** to the neutral atom: **F**<sup>-</sup>, **S**<sup>2-</sup>, **Sb**<sup>-</sup>
- If there is a positive charge, then electrons are subtracted from the neutral atom: K<sup>+</sup>, V<sup>3+</sup>, As<sup>+</sup>

How many electrons are there on each of the following:

Cl<sup>-</sup>\_\_\_\_\_  $Al^{3+}$ \_\_\_\_\_  $Fe^{2+}$ \_\_\_\_\_  $O^{2-}$ \_\_\_\_

#### **Representing Atomic Number & Mass Number**



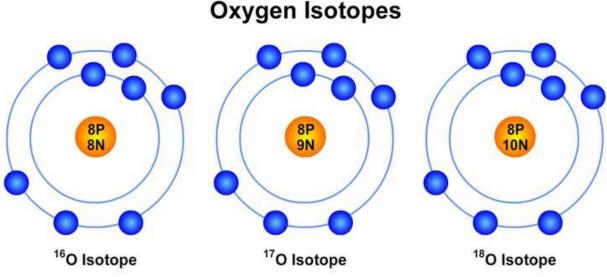
Number of protons = 9

Atomic Number = 9 Mass number = 19 amu

Number of electrons = 9

Number of neutrons = Mass number – Atomic number = 19 - 9= 10

#### **Atomic Mass**


Atomic Mass: the average of the mass numbers of all the different isotopes found for a specific element. This is the number that you find on your periodic table.

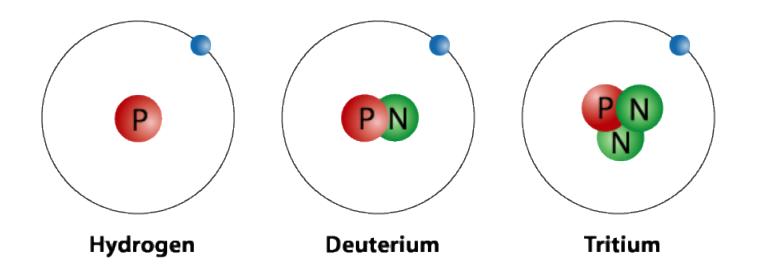
#### Example:

- 1. Oxygen-16 mass number = 16.0 amu
- 2. Oxygen-17 mass number = 17.0 amu
- 3. Oxygen-18 mass number = 18.0 amu

If all three of these isotopes exist in equal amounts, then the average atomic mass is

 $\frac{16.0 + 17.0 + 18.0 \text{ amu}}{3} = 17.0 \text{ amu}$ 



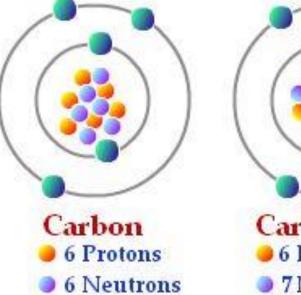


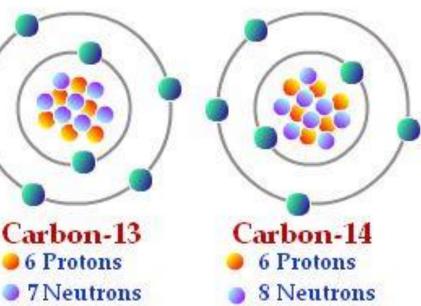

#### **Atomic Number & Mass Number Activity**

**Complete the following table with the appropriate values.** Assume all elements are neutral

| Atomic<br>Symbol                 | Atomic<br>Number | Mass<br>Number | Number of<br>protons | Number of<br>neutrons | Number of<br>electrons |
|----------------------------------|------------------|----------------|----------------------|-----------------------|------------------------|
| <sup>24</sup> / <sub>12</sub> Mg |                  |                |                      |                       |                        |
|                                  | 14               |                |                      | 14                    |                        |
|                                  |                  | 40             |                      | 20                    |                        |
|                                  |                  | 32             |                      |                       | 16                     |
| 17 <b>C</b> ]                    |                  |                |                      |                       |                        |

# Isotopes and Average Atomic Mass





# What are isotopes?

- •Isotopes: Versions of an atom or an element that have the same number of protons, but different numbers of neutrons.
- •The Average Atomic Mass of an element is based on the isotopes of that element.

Therefore, isotopes of an element have the:

- 1. Same atomic number
- 2. Different mass number





#### How to Calculate Average Atomic Mass

1. Find the **atomic mass** of the isotope. You may be given the exact mass or the just a rounded mass.

| Isotopes<br>(Silver Ag): | Atomic Mass:  |
|--------------------------|---------------|
| <sup>107</sup> Ag        | 106.90509 amu |
| <sup>109</sup> Ag        | 108.90470 amu |

#### How to Calculate Average Atomic Mass

2. Find the abundance of the isotope, you may have to look this up or it may be provided to you

| Isotopes<br>(Silver Ag): | Atomic Mass:                |
|--------------------------|-----------------------------|
| 107<br>Ag<br>109<br>Ag   | 51.86%<br>48.14%<br>100.00% |

#### How to Calculate Average Atomic Mass

3. Change percentages to decimals. Divide the percentage by 100.

| Isotopes (Silver Ag): | Abundance:            |
|-----------------------|-----------------------|
| <sup>107</sup> Ag     | 51.86% ÷100% = 0.5186 |
| <sup>109</sup> Ag     | 48.14%÷100%=0.4814    |

#### How to calculate Average Atomic Mass (AAM)

4. Calculate the average atomic mass by adding:

AAM= (Mass (i1))(Abundance (i1))+(Mass (i2))(Abundance (i2))

 $AAM = (M_{(1)})(A_{(1)}) + (M_{(2)})(A_{(2)})$ 

#### How to calculate Average Atomic Mass (AAM)

4. Calculate the average atomic mass by adding:

AAM= (Mass <sub>(i1)</sub>)(Abundance <sub>(i1)</sub>)+(Mass <sub>(i2)</sub>)(Abundance <sub>(i2)</sub>) AAM= (M <sub>(1)</sub>)(A <sub>(1)</sub>) + (M <sub>(2)</sub>)(A <sub>(2)</sub>)

AAM = [(106.90509 amu)\*(0.5186)+(108.90470 amu)\*(0.4814)]AAM = 107.87 AMU

Two carbon isotopes are found. One has a mass number of 12.0 amu and its percent abundance is 98.90% & the other has a mass number of 13.0 amu and has a percent abundance of 1.10%. Calculate its average atomic mass.

Two carbon isotopes are found. One has a mass number of 12.0 amu and its percent abundance is 98.90% & the other has a mass number of 13.0 amu and has a percent abundance of 1.10%. Calculate its average atomic mass.

 $AAM = (Mass_{(i1)})(Abundance_{(i1)}) + (Mass_{(i2)})(Abundance_{(i2)})$ 

Two carbon isotopes are found. One has a mass number of 12.0 amu and its percent abundance is 98.90% & the other has a mass number of 13.0 amu and has a percent abundance of 1.10%. Calculate its average atomic mass.

AAM = (Mass  $_{(i1)}$ )(Abundance  $_{(i1)}$ ) + (Mass  $_{(i2)}$ )(Abundance  $_{(i2)}$ ) AAM = (12.0 amu)(0.9890) + (13.0amu)(0.011) AAM = 12.011 amu

Copper has two naturally occurring isotopes. Cu-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%. What is the atomic mass of the second isotope? What is its nuclear symbol?

Copper has two naturally occurring isotopes. Cu-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%. What is the atomic mass of the second isotope? What is its nuclear symbol?

 $AAM = (Mass_{(i1)})(Abundance_{(i1)})+(Mass_{(i2)})(Abundance_{(i2)})$ 

Copper has two naturally occurring isotopes. Cu-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%. What is the atomic mass of the second isotope? What is its nuclear symbol?

 $AAM = (Mass_{(i1)})(Abundance_{(i1)}) + (Mass_{(i2)})(Abundance_{(i2)})$ 63.55amu = (62.9296 amu)(0.6915) + (X)(0.3085)

Copper has two naturally occurring isotopes. Cu-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%. What is the atomic mass of the second isotope? What is its nuclear symbol?

 $AAM = (Mass_{(i1)})(Abundance_{(i1)}) + (Mass_{(i2)})(Abundance_{(i2)})$ 63.55amu = (62.9296 amu)(0.6915) + (X)(0.3085) 63.55amu = 43.52amu + 0.3085X

Copper has two naturally occurring isotopes. Cu-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%. What is the atomic mass of the second isotope? What is its nuclear symbol?

AAM = (Mass <sub>(i1)</sub>)(Abundance <sub>(i1)</sub>) + (Mass <sub>(i2)</sub>)(Abundance <sub>(i2)</sub>) 63.55amu = (62.9296 amu)(0.6915) + (X)(0.3085) 63.55amu = 43.52amu + 0.3085X 20.03amu = 0.3085X

Copper has two naturally occuring isotopes. Cu-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%. What is the atomic mass of the second isotope? What is its nuclear symbol?

 $AAM = (Mass_{(i1)})(Abundance_{(i1)}) + (Mass_{(i2)})(Abundance_{(i2)})$ 63.55amu = (62.9296 amu)(0.6915) + (X)(0.3085) 63.55amu = 43.52amu + 0.3085X 20.03amu = 0.3085X 64.93 amu = X

### HOMEWORK

## •Complete problems on handout